(二)DNA结构的多态性
Watson和Crick提出的DNA双螺旋结构属于B型双螺旋,它是以在生理盐溶液中抽出的DNA纤维在92%相对湿度下进行X-射线衍射图谱为依据进行推测的,这是DNA分子在水性环境和生理条件下最稳定的结构。然而以后的研究表明DNA的结构是动态的。在以钾或绝作反离子,相对湿度为75%时,DNA分子的X-射线衍射图给出的是A构象,A-DNA每螺旋含11个碱基对,而且变成A-DNA后,大沟变窄、变深,小沟变宽、变浅。由于大沟、小沟是DNA行使功能时蛋白质的识别位点,所以由B-DNA变为A-DNA后,蛋白质对DNA分子的识别也发生了相应变化。
一般说来,A-T丰富的DNA片段常呈B-DNA。采用乙醇沉淀法纯化DNA时,整个过程中,大部分DNA由B-DNA经过C-DNA,最终变构为A-DNA。若DNA双链中一条链被相应的RNA链所替换,会变构成A-DNA。当DNA处于转录状态时,DNA模板链与由它转录所得的RNA链间形成的双链就是A-DNA。由此可见A-DNA构象对基因表达有重要意义。此外,B-DNA双链都被RNA链所取代而得到由两条RNA链组成的双螺旋结构也是A-DNA。除A-DNA、B-DNA螺旋外,还存在B′-DNA、C-DNA、D-DNA等,其结构参数见表15-4。
表15-4 不同右手双螺旋DNA的结构参数
双螺旋 | 碱基倾 | 碱基夹 | 碱基间距 | 螺距 | 每轮碱 | 小沟宽/nm× | 大沟宽nm× |
角/(°) | 角(°) | /nm | /nm | 基数 | 小沟宽nm | 大沟宽nm | |
B-DNA | 0 | 36.0 | 0.337 | 3.4 | 10 | 0.57×0.75 | 1.17×0.85 |
C-DNA | 6 | 38.0 | 0.331 | 3.1 | 9.3 | 0.48×0.79 | 1.05×0.75 |
D-DNA | 45.0 | 0.303 | 0.13×0.67 | 0.89×0.58 | |||
A-DAN | 20 | 32.7 | 0.256 | 2.8 | 11 | 1.10×0.28 | 0.27×1.35 |
总之,DNA的双螺旋结构永远处于动态平衡中,DNA分子构象的变化与糖基和碱基之间空间相对位置有关。
1979年,Wang和Rich等人在研究人工合成的CGCGCG单晶的X-射线衍射图谱时出人意料地发现这种六聚体的构象与上面讲到的完全不同。它是左手双螺旋,与右手螺旋的不同是螺距延长(4.5nm左右),直径变窄(1.8nm),每个螺旋含12个碱基对,分子长链中磷原子不是平滑延伸而是锯齿形排列,有如“之”字形一样,因此叫它Z构象(英文字Zigzag的第一个字母)。还有,这一构象中的重复单位是二核苷酸而不是单核苷酸;而且ZDNA只有一个螺旋沟,它相当于B构象中的小沟,它狭而深,大沟则不复存在(图15-7)。进一步的分析还证明,Z-DNA的形成是DNA单链上出现嘌呤与嘧啶交替排列所成的。比如CGCGCGCG或者CACACACA。
图15-7 Z-DNA和B-DNA
Z-DNA有什么生物学意义呢?应当指出Z-DNA的形成通常在热力学上是不利的。因为Z-DNA中带负电荷的磷酸根距离太近了,这会产生静电排斥。但是,DNA链的局部不稳定区的存在就成为潜在的解链位点。DNA解螺旋却是DNA复制和转录等过程中必要的环节,因此认为这一结构与基因调节有关。比如SV40增强子区中就有此结构,又如鼠类微小病毒DNS复制区起始点附近有GC交替排列序列。此外,DNA螺旋上沟的特征在其信息表达过程中起关键作用。调控蛋白都是通过其分子上特定的氨基酸侧链与DNA双螺旋沟中的碱基对一侧的氢原子供体或受体相互作用,形成氢键从而识别DNA上的遗传信息的。大沟所带的遗传信息比小沟多。沟的宽窄和深浅也直接影响到调控蛋白质对DNA信息的识别。ZDNA中大沟消失,小沟狭而深,使调控蛋白识别方式也发生变化。这些都暗示ZDNA的存在不仅仅是由于DNA中出现嘌呤一啶嘧交替排列之结果,也一定是在漫漫的进化长河中对DNA序列与结构不断调整与筛选的结果,有其内在而深刻的含意,只是人们还未充分认识而已。
DNA构象的可变性,或者说DNA二级结构的多态性的发现拓宽了人们的视野。原来,生物体中最为稳定的遗传物质也可以采用不同的姿态来实现其丰富多采的生物学功能。
多年来,DNA结构的研究手段主要是X射线衍射技术,其结果是通过间接观测多个DNA分子有关结构参数的平均值而获得的。同时,这项技术的样品分析条件使被测DNA分子与天然状态相差甚远。因此,在反映DNA结构真实性方面这种方法存在着缺陷。1989年,应用扫描隧道显微镜(scanning tummelingmicroscopy,STM)研究DNA结构克服了上述技术的缺陷。这种先进的显微技术,不仅可将被测物放大500万倍,且能直接观测接近天然条件下单个DNA分子的结构细节。STM技术的应用是DNA结构研究中的重要进展,可望在探索DNA结构的某些未知点上展示巨大潜力。

- DNA结构的多态性《生物化学与分子生物学》
- DNA结构的不均一性《生物化学与分子生物学》
- DNA聚合酶《实用免疫细胞与核酸》
- DNA及RNA的化学组成《基因诊断与性传播疾病》
- DNA聚合酶《实用免疫细胞与核酸》
- DNA复制的终止阶段《生物化学与分子生物学》
- DNA酶《实用免疫细胞与核酸》
- DNA复制的一般过程《生物化学与分子生物学》
- DNA探针《实用免疫细胞与核酸》
- DNA复制的延长阶段以及参与的酶和蛋白质分子《生物化学与分子生物学》
- DNA探针的应用《实用免疫细胞与核酸》
- DNA复制的起始阶段《生物化学与分子生物学》
- DNA限制性内切酶《实用免疫细胞与核酸》
- DNA分子结构《基因诊断与性传播疾病》
- DNA限制性内切酶图谱分析《生物化学与分子生物学》
- DNA的重组《实用免疫细胞与核酸》
- DNA限制性片段多态性连锁分析《实用免疫细胞与核酸》
- DNA的一级结构《生物化学与分子生物学》
- DNA修复《生物化学与分子生物学》
- DNA的序列测定《动脉粥样硬化》
- DNA指纹 与法医鉴定《实用免疫细胞与核酸》
- DNA的损伤与修复《生物化学与分子生物学》
- DNA重组及基因工程技术对医学和生命科学发展的贡献《生物化学与分子生物学》
- DNA的损伤《生物化学与分子生物学》
- DNA重组与基因工程《生物化学与分子生物学》
- DNA的生物合成《生物化学与分子生物学》
- DSA的成像基本原理与设备《医学影像学》
- DNA的克隆与序列测定《动脉粥样硬化》
- DSA的临床应用《医学影像学》
- DNA的克隆《动脉粥样硬化》
- DSA检查技术《医学影像学》
《生物化学与分子生物学》
- 分子生物学绪论
- 第一章 蛋白质化学(Chemistry of Protein)
- 第一节 蛋白质分子的组成
- 第二节 蛋白质分子中氨基酸的连接方式
- 第三节 蛋白质的结构及其功能
- 第四节 蛋白质的理化性质
- 第五节 蛋白质的分类
- 参考资料
- 第二章 酶(Enzyme)
- 第一节 酶的作用特点
- 第二节 酶的分类和命名
- 第三节 酶的分子组成和化学结构
- 第四节 酶的作用机理
- 第五节 酶促反应的动力学
- 第六节 酶在体内存在的几种主要形式
- 参考资料
- 第三章 维生素(Vitamins)
- 第四章 糖代谢
- 第一节 概述(overview)
- 一、代谢的基本概念(Basis concepts of Metabolism)
- 二、食物中糖的消化和吸收(Digestion and absorption of carbohydrates)
- 三、糖的主要生理功能(Functions of carbohydrate)
- 第二节 糖的分解代谢(catabolism of carbohydrate)
- 第三节 糖异生
- 第四节 糖原的合成与分解
- 第五节 血糖及血糖含量调节
- 第五章 脂类代谢
- 第一节 概 述
- 第二节 血脂及其代谢
- 第三节 甘油三酯代谢
- 第四节 脂肪酸代谢
- 第五节 磷脂代谢
- 第六节 胆固醇代谢
- 第六章 生物氧化(Biological oxidation)
- 第一节 概 述
- 第二节 呼 吸 链
- 一、呼吸链的组成
- (一)尼克酰胺腺嘌呤二核苷酸(NAD+)或称辅酶I(CoI)。
- (二)黄素蛋白(flavoproteins)
- (三)铁硫蛋白(ironsulfur proteins,Fe-S)
- (四)泛醌(ubiquinone,UQ或Q)
- (五)细胞色素体系
- 二、呼吸链中各种传递体的排列顺序
- 三、胞浆中NADH的转移
- 第三节 ATP的生成、储存和利用
- 第七章 氨基酸代谢
- 第一节 氨基酸的一般代谢
- 第二节 个别氨基酸代谢
- 第三节 氨基酸的生物合成
- 第八章 核苷酸代谢(Nucleotide Metabo lism)
- 第一节 核苷酸的化学结构
- 第二节 嘌呤核苷酸的合成代谢
- 第三节 嘧啶核苷酸的合成代谢
- 第四节 脱氧核糖核苷酸的生成
- 第五节 核苷酸的分解代谢
- 第九章 物质代谢调节(Regulation in Metabolism)
- 第一节 细胞水平的代谢调节
- 第二节 激素对物质代谢的调节
- 第三节 物质代谢的整体调节
- 第十章 血浆蛋白与凝血
- 第十一章 肝脏的生物化学
- 第一节 肝脏的化学组成特点
- 第二节 肝脏在物质代谢中的作用
- 第三节 肝脏的生物转化作用
- 第四节 胆汁酸代谢
- 第五节 胆色素代谢
- 第十二章 钙磷代谢及微量元素
- 第十三章 结缔组织生化(Biochemistryof Connective Tissue)
- 第一节 蛋白多糖
- 第二节 胶原蛋白
- 第三节 弹性蛋白及角蛋白
- 第四节 结缔组织代谢的调节
- 第十四章 神经组织生化(Biochemistry of Neural Tissue)
- 第一节 血脑屏障
- 第二节 脑代谢的某些特点
- 第三节 神经递质(Neurotransmitter)的代谢
- 第十五章 核酸的结构与功能The Structure and Function of Nucleic Acid
- 第一节 核酸的化学组成
- 第二节 DNA的一级结构与功能
- 第三节 DNA的二级结构与功能
- 第四节 DNA的三级结构与功能
- 第五节 RNA的结构与功能
- 小结
- 第十六章 DNA的生物合成(TheBiosynthesis of DNA)
- 第一节 DNA的复制
- 第二节 反转录作用(reverse transcription)
- 第三节 DNA的损伤与修复
- 第十七章 RNA的生物合成(TheBiosynthesis of RNA)
- 第十八章 蛋白质的生物合成(The Biosynthesis of protein)
- 第一节 参与蛋白质生物合成的物质
- 第二节 蛋白质生物合成过程
- 第三节 蛋白质合成后的分泌及加工修饰
- 第四节 蛋白质合成的抑制剂
- 小结
- 第十九章 基因表达调控(Gene Expression and Its Regulation)
- 第一节 基因表达调控的现象和概念
- 第二节 原核基因表达调控
- 第三节 真核基因表达调控
- 本章提要
- 第二十章 DNA重组与基因工程DNARecombination and Genetic engineering
- 第一节 工具酶
- 第二节 基因工程载体
- 第三节 目的序列与载体的连接
- 第四节 目的基因序列的来源和分离
- 第五节 基因序列导入细胞
- 第六节 目的基因序列克隆的筛选与鉴定
- 第七节 克隆基因的表达
- 第八节 DNA重组及基因工程技术对医学和生命科学发展的贡献
- 小结
- 第二十一章 细胞通讯与细胞信号转导的分子机理Cell Communication and Cell Signal Transduction
- 第一节 细胞通讯方式
- 第二节 细胞内受体的信号转导机理
- 第三节 膜受体介导的信号转导
- 一、膜受体的分类
- 二、膜受体信号转导的分子机理
- 第二十二章 癌基因与抑癌基因(Oncogene and anti-oncogene)