(二)心肌的自动节律性
组织、细胞能够在没有外来刺激的条件下,自动地发生节律性兴奋的特性,称为自动节律性,简称自律性。具有自动节律性的组织或细胞,称自律组织或自律细胞。组织、细胞单位时间(每分钟)内能够自动发生兴奋的次数,即自动兴奋的频率,是衡量自动节律性高低的指标。
图4-11 期前收缩和代偿性间歇
每条曲线下的电磁标记号批示给予电刺激的时间,曲线1-3,
刺激落在有效不应期内,不引起反应;曲线4-6,
刺激落在相对不应期内,引起期前收缩和代偿性间歇
1.心肌的自动节律性和各自律级组织的相互关系很早以前就有人观察到,在适宜条件下,两栖类和哺乳类动物的离体心脏,在未受到任何刺激的情况下,可以长时间地、自动地、有节奏地进行兴奋和收缩。但是,只有到了近代,根据细胞内微电极技术记录的跨膜电位是否具有4期自动去极化这一特征,才确切地证明,并不是所有心肌细胞,而只是心脏特殊传导组织内某些自律细胞才具有自动节律性。特殊传导系统各个部位(结区除外)的自律性有等级差别;其中窦房结细胞自律性最高,自动兴奋频率约为每分钟100次,末梢浦肯野纤维网自律性最低(约每分钟25次),而房室交界(约每分钟50次)和房室束支的自律性依次介于两者之间。
由一个起搏点主宰整个心脏的整体活动具有极其重要的生理意义。那么,各部分自律组织的活动怎么能统一起来而不致于“各自为政”呢?实验中很容易观察到,心脏始终是依照当时情况下自律性最高的部位所发出的兴奋来进行活动的。这就是说,各部分的活动统一在自律性最高部位的主导作用之下。正常情况下,窦房结的自律性最高,它自动产生的兴奋向外扩布,依次激动心房肌、房室交界、房室束、心室内传导组织和心室肌,引起整个心脏兴奋和收缩。可见,窦房结是主导整个心脏兴奋和跳动的正常部位,故称为正常起搏点。其它部位自律组织并不表现出它们自身的自动节律性,只是起着兴奋传导作用,故称为潜在起搏点。在某种异常情况下,窦房结以外的自律组织(例如,它们的自律性增高,或者窦房结的兴奋因传导阻滞而不能控制某些自律组织)也可能自动发生兴奋,而心房或心室则依从当时情况下节律性最高部位的兴奋而跳动,这些异常的起搏部位则称为异位起搏点。
窦房结对于潜在起搏点的控制,通过两种方式实现:①抢先占领。窦房结的自律性高于其它潜在起搏点,所以,在潜在起搏点4期自动去极尚未达到阈电位水平之前,它们已经受到窦房结发出并依次传布而来的兴奋的激动作用而产生了动作电位,其自身的自动兴奋就不可能出现;②超速压抑或超速驱动压抑(overdrive suppression)。窦房结对于潜在起搏点,还可产生一种直接的抑制作用。例如,当窦房结对心室潜在起搏点的控制突然中断后,首先会出现一段时间的心室停搏,然后心室才能按其自身潜在起搏点的节律发生兴奋和搏动。出现这个现象的原因是:在自律性很高的窦房结的兴奋驱动下,潜在起搏点“被动”兴奋的频率远远超过它们本身的自动兴奋频率。潜在起搏长时间的“超速”兴奋的结果,出现了抑制效应;一旦窦房结的驱动中断,心室潜在起搏点需要一定的时间才能从被压抑状态中恢复过来,出现它本身的自动兴奋。另外还可以看到,超速压抑的程度与两个起搏点自动兴奋频率的差别呈平行关系,频率差别愈大,抑制效应愈强,驱动中断后,停搏的时间也愈长。因此,当窦房结兴奋停止或传导受阻后,首先由房室交界代替窦房结作为起搏点,而不是由心室传导组织首先代替;因为窦房结和房室交界的自动兴奋频率差距较小,超速压抑的程度较小。超速压抑产生的机制比较复杂,目前尚未完全弄清;但这一事实提示我们,在人工起搏的情况下,如因故需要暂时中断起搏器时,在中断之前其驱动频率应该逐步减慢,以避免发生心搏暂停。
2.决定和影响自律性的因素自律细胞的自动兴奋,是4期膜自动去极化使膜电位从最大复极电位达到阈电位水平而引起的。因此,自律性的高低,既受最大复极电位与阈电位的差距的影响,也取决于4期膜自动去极的速度(图4-12)。
图4-12 影响自律性的因素
A:起搏电位斜率由a减少到b时,自律性降低
B:最大复极电位水平由a达到d,或阈电位由TP-1升到TP-2时,自律性均降低 Tp :阈电位
(1)最大复极电位与阈电位之间的差距:最大复极电位绝对值减少和(或)阈电位下移,均使两者之间的差距减少,自动去极化达到阈电位水平所需时间缩短,自律性增高;反之亦然。例如,迷走神经系统兴奋时可使窦房结自律细胞K+通道开放率增高,故其复极3期内K+外流增加,最大复极电位绝对值增大,自律性降低,心率减慢。
(2)4期自动除极速度:4期自动除极速度与膜电位从最大复极电位水平达到阈电梯水平所需时间密切相关;若除极速度增快,达阈电位水平所需时间缩短,单位时间内发生兴奋的次数增多,自律性增高。从前一节已知,4期自动除极速度取决于净内向电流增长的速度,即取决于膜内净正电荷增长速度。例如,儿茶酚胺可以增强If,因而加速浦肯野细胞4期除极速度,提高其自律性。

- 心肌的自动节律性《生理学》
- 心肌的兴奋性《生理学》
- 心肌梗塞《家庭医学百科-自救互救篇》
- 心肌的生物电现象和生理特征《生理学》
- 心肌梗塞《百病自测》
- 心肌的缺血/再灌注损伤《病理生理学》
- 心肌梗塞《心脏病学》
- 心肌的结构破坏《病理生理学》
- 心肌梗塞病人的家庭护理《家庭医学百科-家庭护理篇》
- 心肌的电生理特性《生理学》
- 心肌梗死《物理诊断学》
- 心肌的传导性和心脏内兴奋的传导《生理学》
- 心肌梗死《默克家庭诊疗手册》
- 心肌的传导功能《急诊医学》
- 心肌梗死《病理学》
- 心肌病《心脏病学》
- 心肌梗死的定位诊断《物理诊断学》
- 心肌病《病理学》
- 心肌梗死心电图的演变及分期《物理诊断学》
- 心肌病《默克家庭诊疗手册》
- 心肌灌注显像《物理诊断学》
- 心肌《组织学与胚胎学》
- 心肌疾病《心脏病学》
- 心机械图《心脏病学》
- 心肌能量代谢障碍《病理生理学》
- 心火上炎《中医词典》
- 心肌细胞的生物电现象《生理学》
- 心火上炎《中医名词词典》
- 心肌纤维的超威结构《组织学与胚胎学》
- 心火篇《外经微言》
- 心肌纤维的光镜结构《组织学与胚胎学》
《生理学》
- 第一章 绪论
- 第一节 生理学的研究对象和任务
- 第二节 生理学的发展简史
- 第三节 生理功能的调节
- 第四节 生理功能的调节控制
- 第二章 细胞的基本功能
- 第一节 细胞膜的基本结构和物质转运功能
- 第二节 细胞的跨膜信号传递功能
- 一、由具有特异感受结构的通道蛋白质完成的跨膜信号传递
- 二、由膜的特异受体蛋白质、G-蛋白和膜的效应器酶组成的跨膜信号传递系统
- 第三节 细胞的兴奋性和生物电现象
- 一、兴奋性和刺激引起兴奋的条件
- 二、细胞的生物电现象及其产生机制
- 三、兴奋的引起和兴奋的传导机制
- 第四节 肌细胞的收缩功能
- 第三章 血液
- 第一节 血液的组成与特性
- 第三节 血细胞及其功能
- 第三节 生理止血、血液凝固与纤维蛋白溶解
- 第四节 血型与输血原则
- 第四章 血液循环
- 第一节 心脏的泵血功能
- 第二节 心肌的生物电现象和生理特征
- 第三节 血管生理
- 第四节 心血管活动的调节
- 第五节 器官循环
- 第五章 呼吸
- 第一节 肺 通 气
- 第二节 呼吸气体的交换
- 一、气体交换原理
- 二、气体在肺的交换
- 三、气体在组织的交换
- 第三节 气体在血液中的运输
- 一、氧和二氧化碳在血液中存在的形式
- 二、氧的运输
- 三、二氧化碳的运输
- 第四节 呼吸运动的调节
- 第六章 消化和吸收
- 第一节 概述
- 第二节 口腔内消化
- 第三节 胃内消化
- 第四节 小肠内消化
- 第五节 大肠内消化
- 第六节 吸 收
- 第七章 能量代谢和体温
- 第一节 能量代谢
- 第二节 体温及其调节
- 第八章 尿的生成和排出
- 第一节 肾的功能解剖和肾血流量
- 第二节 肾小球的滤过功能
- 第三节 肾小管与集合管的转运功能
- 一、肾小管与集合管的转运方式
- 二、各段肾小管和集合管的转运功能
- 第四节 尿液的浓缩和稀释
- 第五节 肾尿生成的调节
- 第六节 清除率
- 第七节 尿的排放
- 第九章 感觉器官
- 第一节 概述
- 第二节 视觉器官
- 第三节 听觉器官
- 一、人耳的听阈和听域
- 二、外耳和中耳的传音作用
- 三、耳蜗的感音换能作用
- 四、听神经动作电位
- 第四节 前庭器官
- 第五节 嗅觉和味觉
- 第六节 皮肤感受
- 第十章 神经系统
- 第一节 神经元活动的一般规律
- 第二节 反射活动的一般规律
- 第三节 神经系统的感觉分析功能
- 一、脊髓的感觉传导与分析功能
- 二、丘脑
- 三、感觉投射系统
- 四、大脑皮层的感觉分析功能
- 五、痛觉的病理生理
- 第四节 神经系统对躯体运动的调节
- 一、脊髓对躯体运动的调节
- 二、低位脑干肌紧张的调节
- 三、姿势反射
- 四、小脑
- 五、基底神经节
- 六、大脑皮层对躯体运动的调节
- 第五节 神经系统对内脏活动的调节
- 一、自主神经系统
- 二、脊髓对内脏活动的调节
- 三、低位脑干对内脏活动的调节
- 四、下丘脑
- 五、神经、内分泌和免疫功能的关系
- 六、大脑皮层对内脏活动的调节
- 第六节 脑的高级功能和脑电图
- 第十一章 内分泌
- 第一节 概述
- 第二节 下丘脑的内分泌功能
- 第三节 垂体
- 第四节 甲状腺
- 第五节 甲状旁腺和甲状腺C细胞
- 第六节 肾上腺
- 第七节 胰岛
- 第八节 松果体其他
- 第十二章 生殖
- 生理学索引